Holding an object: neural activity associated with fingertip force adjustments to external perturbations.
نویسندگان
چکیده
When you hold an object, a sudden unexpected perturbation can threaten the stability of your grasp. In such situations grasp stability is maintained by fast reflexive-like grip-force responses triggered by the somatosensory feedback. Here we use functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms involved in the grip-force responses associated with unexpected increases (loading) and decreases (unloading) in the load force. Healthy right-handed subjects held an instrumented object (of mass 200 g) between the tips of right index finger and thumb. At some time during an interval of 8 to 45 s the weight of the object was suddenly increased or decreased by 90 g. We analyzed the transient increases in the fMRI signal that corresponded precisely in time to these grip-force responses. Activity in the left primary motor cortex was associated with the loading response, but not with unloading, suggesting that sensorimotor processing in this area mediates the sensory-triggered reflexive increase in grip force during loading. Both the loading and the unloading events activated the cingulate motor area and the medial cerebellum. We suggest that these regions could participate in the updating of the sensorimotor representations of the fingertip forces. Finally, the supplementary somatosensory area located on the medial wall of the parietal lobe showed an increase in activity only during unloading, indicating that this area is involved in the sensorimotor processing generating the unloading response. Taken together, our findings suggest different central mechanisms for the grip-force responses during loading and unloading.
منابع مشابه
Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults.
We investigated changes across the adult life span of the fingertip forces used to grip and lift objects and their possible causes. Grip force, relative safety margin (grip force exceeding the minimum to avoid slip, as a fraction of slip force), and skin slipperiness increased beginning at age 50 years. Skin slipperiness explained relative safety margin increases until age 60 years. Hence, afte...
متن کاملFingertip moisture is optimally modulated during object manipulation.
Coordination between the normal force exerted by fingers on a held object and the tangential constraints at the fingertips helps to successfully manipulate objects. It is well established that the minimal grip force required to prevent an object from slipping strongly depends on the frictional properties at the finger-object interface. Moreover, interindividual variation in the modulation of gr...
متن کاملHand interactions in rapid grip force adjustments are independent of object dynamics.
Object manipulation requires rapid increase in grip force to prevent slippage when the load force of the object suddenly increases. Previous experiments have shown that grip force reactions interact between the hands when holding a single object. Here we test whether this interaction is modulated by the object dynamics experienced before the perturbation of the load force. We hypothesized that ...
متن کاملFuzzy and Neural Network Control of Object Acquisition for Power Grasp
There exist numerous examples of grasping tasks in which stable grasping in the presence of uncertainties is needed. Applications such as underwater rescue and salvage and space exploration call for grasping of poorly specified objects in unstructured environments. A fully enveloping grasp, also called a power grasp, appears well suited for stable grasping in such unstructured environments. Thi...
متن کاملCoordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.
Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2007